
www.manaraa.com

510 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16, NO. 5, MAY 1990

Software Size Estimation of Object-O riented Systems
LUIZ A. LARANJEIRA, STUDENT MEMBER, IEEE

Obstruct-software size estimation has been the object of a lot of
research in the software engineering community due to the need of
reliable size estimates in the utilization of existing software project cost
estimation models. This paper discusses the strengths and weaknesses
of existing size estimation techniques, considers the nature of software
size estimation, and presents a software size estimation model which
has the potential for providing more accurate size estimates than ex-
isting methods. The proposed method takes advantage of a character-
istic of object-oriented systems, the natural correspondence between
specification and implementation, in order to enable users to come up
with better size estimates at early stages of the software development
cycle. Through a statistical approach the method also provides a con-
fidence interval for the derived size estimates. The relation between the
presented software sizing model and project cost estimation has also
been considered.

Index Terms-Functional specification, object-oriented systems,
software cost estimation, software size estimation.

I. INTRODUCTION

T HE software crisis has focused the attention of the
software engineering community on the research of

disciplined techniques for software development in the at-
tempt to reduce and control the alarming growth of soft-
ware systems development and maintenance costs. In par-
ticular, the commonly noticed tendency in software
systems development for gross cost overruns and unde-
sirable project delays has caused a lot of work to be done
in developing project cost and effort estimation models.
Accurate cost and scheduling estimations provide highly
valuable aid in a number of management decisions, bud-
get and personnel allocations, and in supporting reliable
bids for contract competition.

Cost estimation models today available for the software
engineering practitioner include: the Walston-Felix model
[36], the Doty model [111, the Putnam model [25], the
RCA PRICE S model [8], the Bailey-Basili model [2],
the COCOMO (COnstructive Cost Model) model [3], the
SOFTCOST model [34], and, recently, the Jensen model
[141. An overview of each of these models is presented in
[7]. In [3], a complete description of the COCOMO model
together with a very detailed approach for its utilization
on the daily life of an organization can be found. The
discussion we carry out here will be generally valid for
any of the mentioned cost models, although we concen-
trate something more on COCOMO in terms of examples

Manuscript received July 25, 1988; revised October 15, 1989. Recom-
mended by C. G. Davis.

The author is with the Department of Electrical and Computer Engi-
neering, University of Texas at Austin, Austin, TX 78712.

IEEE Log Number 9034386.

and details due to a more complete documentation avail-
able for this model.

The reception of cost estimation models in the software
community has been usually good. Managers feel more
comfortable using estimation models than just relying on
rules of thumb and entirely subjective judgments when
planning budgetary and personnel resources for a new
project. Even though estimation models have some limi-
tations that managers need to be aware of [3], [24], [7],
they may be viewed as valuable tools in the software en-
gineering process.

A common point concerning the above mentioned
models is that they base their effort and scheduling pre-
dictions on the estimated size of the software project at
hand, in terms of number of lines of code (LOC), or thou-
sands of lines of code (KLOC). Generally the effort esti-
mation is based upon an equation similar to

E = A + B*(KLOC)C

where E stands for estimated effort (usually in man-
months), A, B, and C are constants, and KLOC is the
expected number of thousands of lines of code in the final
system. From the above equation it is easy to see that a
given percentage error in the size (KLOC) may cause an
even larger percentage error in the estimated effort. For
instance, in COCOMO a 50% error in the size estimate
will roughly result in a 63% error in the effort estimate.
In other terms, size estimation error causes cost estima-
tion error, since cost estimates are derived based on effort
prediction.

Existing software cost estimation models assume that a
plans and requirement analysis phase (Fig. l), and con-
sequently the system specifications, has been carried out
before the model is applied. Their cost and schedule es-
timations cover the subsequent phases of the software de-
velopment cycle (product design, detailed design, coding,
integration, and test). Maintenance costs are estimated in
a slightly different way, since by maintenance time the
system is already entirely developed and its actual size is
known.

It is obvious that, concerning development cost esti-
mation, if a model would only produce effort estimates,
let us say, after the detailed design or coding phase, such
an estimation would have relatively low value for the
project management and control. We surely need esti-
mates in the early stages of the software life cycle in order
that these estimates may cause a real impact on the devel-
opment process. As a consequence, size estimations must
be provided in the early phases of the software life cycle.

0098-5589/90/0500-05 lO$Ol .OO @ 1990 IEEE

www.manaraa.com

LARANIEIRA: SOFTWARE SIZE ESTIMATION 511

As an example, let us consider a software system to be
developed for secure message communication. Project
scope indicates a microprocessor based system linked in
a network, providing for communication between govem-
ment agencies. Evaluation of the system indicates the fol-
lowing major functions: user interface and control facili-
ties, edition module, encryption/decryption modules, and
communication modules. Table I shows the size estimates
for each major function and for the entire system.

DetaIled Design

A

Y

Coding/
Unit Test

4 1
Integration/Test

Fig. 1. Software life cycle phases.

Despite the above stated need, existing cost estimation
models do not provide an integrated, detailed rationale
and guidelines for producing system size estimates with
required accuracy. This inconsistency has been pointed
out by Bryant and Kirkham [6].

This paper attempts to focus on the problem of early
size estimation. We will consider previously proposed size
estimation techniques, discuss the nature of software size
estimation and present a technique, based on an object-
oriented specification model (for an object-oriented soft-
ware implementation) and on statistical methods, that
might turn out to provide more reliable software size es-
timates.

II. EXISTING SOFTWARE SIZE ESTIMATION TECHNIQUES

Several approaches for predicting software size have
been proposed in the literature. They could be divided in
two subsets: subjective techniques and objective models.

A. Subjective Techniques
The most popular sizing technique used is the PERT

method where practitioners rely on expert judgment to es-
timate the ultimate size of a project. Such estimates are
based on analogy with projects of similar characteristics,
experience, or, when all else fails, on the intuition of the
estimators [24].

In this approach the project is decomposed in its major
functions, during the plans and requirements phase of the
software life cycle (Fig. l), and an estimation is made for
each of them. The estimated size of the total system will
be the sum of the estimates of the composing functions
1391.

Putnam and Fizsimmons [26] suggested a method for
adding some objectiveness to this technique. The ex-
pected number of lines of code (S;) for each function is
calculated as a weighted average of the optimistic (Oi),
the most likely (M,), and the pessimistic (Pi) size esti-
mates. The estimated size of the total system (S,) will
again be the sum of the estimated function sizes. For ex-
ample

Si =
Oi + 4Mi + Pi

6
S, = C Si *

Considering that there is a very small probability that
the actual size values do not fall in between the optimistic
and pessimistic estimates, the deviation for each function
estimate (Oi) and for the total system size estimate (0,)
will be

D, = Oi - pi
1 6

D, = (c D;)“2.

These equations are based on a beta distribution which
means that 68% of the time the real size of the final soft-
ware should be within S, + D, and that the estimates are
unbiased toward either underestimation and overestima-
tion. Table II extends the simple expert judgment exam-
ple using this PERT approach.

Despite the common utilization of subjective tech-
niques for early software size estimation, two points can
be clearly observed which expose the weaknesses of such
an approach:

1) Experience has shown that expert judgment varies
widely due to psychological and personal factors, and
usually cannot provide estimates with required accuracy.
Reference [7] quotes a study performed by Yourdon Inc.,
where several experienced managers estimated the size of
16 software projects on the basis of the complete speci-
fication for each project. The average expert predictions
are presented in Table III together with the actual size of
each software project, after completed. It may be easily
seen that the discrepancy between estimated and real size
values is large enough to raise questions about the appli-
cability of the method.

2) The assumption, considered in the PERT technique,
that estimates are unbiased toward underestimation or
overestimation, is not confirmed by current experience. It
can be noticed in Table III that 12 of the 16 projects were
underestimated by experts. The reasons for this underes-
timation tendency include the desire to please manage-
ment, incomplete recall of previous experiences, lack of
familiarity with the entire software job, and lack of enough

www.manaraa.com

512 IEEE TRANSACTIONS O N SOFTWARE ENGINEERING, VOL. 16, NO. 5. MAY 1990

TABLE I
SIMPLEEXPERTESTIMATIONFORSECUREMESSAGECOMMUNICATION

SYSTEMSIZE

PERT ESTIMATION FOR
TABLE II

SECUREMESSAGE COMMUNICATION SYSTEM SIZE

Function tItlmlStlc Most Likely Pesslmlstlc Expected Devlatlon
Module Size Size Size Size

I I 1 I I
u1/cont 1 1,800 1 2.500 1 3 200

1 Commun) 700 1 1,000 1 1,300’

TABLE III
ACTUALANDPREDICTEDSIZEOF~~ SOFTWAREPROJECTS

2
3
4
5
6
7

3
8
9
IO
I I
I2
I3
I4
I5
I6

Artllal S,,P

70,919
128.837

23,015
34,560
23,000
25,000
52,080

7,650
25,860
16,300
17,410
33,900
57,194
2 1,020

8,642
17,480

, , I=

34,705
32, IO0
22,000

9,100
12,000

7,300
28,500

8,000
30,600

2,720
15,300

105,300
18,500
35,400

3,650
2,950

knowledge of the particular project being estimated. These
considerations show the need of more accurate software
sizing techniques.

B. Objective Models
There have been several attempts to come up with an

objective model for predicting software size. Generally
the size of a system is expressed as a function of some
known quantities that reflect characteristics of the system.
In [181, Levitin classifies these models in two groups, ac-
cording to the type of the quantities upon which the esti-
mates are made. These groups can be called external
(specification level) models or internal (implementation
level) models.

SpeciJication Level Objective Models: Specification
level models express size as a function of a number of
quantities which can usually be determined early in the
software life cycle from system specifications. One of
these methods, derived by Albrecht (see [l] and [33]),
base software sizing on the so-called “function points. ”
These are characteristics of the system such as the number
of input and output files, the number of logical internal

files, the number of inquiries, etc. The calculation of the
“function points” is performed as a weighted sum of these
quantities, adjusted by some complexity factors. The es-
timated size is related to the number of “function points”
(FP) by an equation of the type

ES = (B*FP) -A

where ES is the estimated software size in thousands of
lines of code (KLOC), and A and B are constants. Table
IV shows briefly the steps for calculating the “function
points” for a given application. First the total unadjusted
function points (TUFP) are calculated. The calculation of
TUFP is based on weighting the system components (ex-
ternal inputs, external outputs, etc.) and classifying them
as “simple,” “average,” or “complex” depending on
the number of data elements in the component and other
factors [Table IV(a)]. Then the technical complexity fac-
tor (TCF) is calculated by estimating the degree of influ-
ence (DI) of some 14 characteristics of the component
[Tables IV(b) and IV(c)]. Finally, the function points (FP)
are given by multiplying the total unadjusted function
points (TUFP) by the technical complexity factor (TCF)
[see formula below Table IV(c)].

Another method, similar to Albrecht’s one, was derived
by Itakura and Takayanagi [12]. This model bases its es-
timations on quantities such as the number of input and
output files, the number of input and output items, the
number of items of transaction type reports, etc. These
quantities are presented in Table V with corresponding
designators (Xi’s) . The model equation is as follows

ES = Ai * Xi

where ES is the estimated software size in thousands of
lines of code (KLOC), the Xj’s are the quantities based on
which the estimation is made, and the Ai’S are the corre-
sponding coefficients.

Although these models attempted to achieve a some-
what more scientific approach to software sizing, it can
be generally stated that they still present a number of dif-
ficulties which point to the need of further research in the
field. We could summarize these points in the following
considerations:

1) These methods were derived to be used in banking
and business applications. Therefore, they lack generality
concerning the nature of the systems to which they might
be applicable.

2) Generally, the quantities upon which the estimates
are based are related to the interactions between the sys-
tem and the environment (inputs and outputs). Albrecht
also attempted to consider the effects of complexity fac-
tors in his sizing model. It is not difficult to understand
that programs having the same type and number of inter-
actions with the environment might have totally different
sizes. It has also been noticed by Boehm, in [3], that com-
plexity does not necessarily relate to size. In this sense
we might have very complex functions which have a rel-
atively short sized implementation, or relatively lengthy
simple housekeeping functions.

www.manaraa.com

LARANJEIRA: SOFTWARE SIZE ESTIMATION

TABLE IV
FUNCTION POINTS CALCULATION: (a) UNADJUSTED FUNCTION POINTS

CALCULATION, (b) TECHNICAL COMPLEXITY FACTOR CALCULATION, (c)
VALUES CORRESPONDING TO DIFFERENT DEGREES OF INFLUENCE.

I 01 Value5 I

3) Another difficulty arises when we think about how
to extend these models to applications such as scientific
programs, text processing, communicat ions systems, and
others, which emerge day to day in the computer software
field. There is no easy way to find the quantit ies upon
which we should base our estimates. A study conducted
in the Navy, based on a database of avionics and sonar
software data, at tempted to investigate quantitative size
estimating relationships in these systems. The result of
this study [lo] states that “no attribute factors have been
found to be statistically significant for sizing adjustments,
except language. ’ ’

W e conclude that much research needs to be done in
order to have def ined quantif iable system attributes upon
which to base reliable size estimates. Despite the above
criticism, the work of Abrecht, and Itakura and Takay-
anagi, represents a move from plain subjective expert es-
timation to more objective ways of quantifying software
size early in the software development process. However,
it seems clear that the goal they looked for needs to be
pursued further yet.

Implementation Level Objective Models: Imple-
mentat ion level models attempt to express size as function
of some characteristics which are more closely related to

513

TABLE V
SOFTWARE SIZING FACTORS IN ITAKURA AND TAKAYANAGI’S MODEL

Xl

x2

x3

x4

x5

X6

x7

X8

x9

Xl0

XI I

number of Input flies

number of Input Items

number of output flies

number of output Items

number of Items of transactlons type records

number of vertical Items In two-dImensIonal table
type reports

number of horizontal Items In two-dlmenslonal table
type reports

number of calculating processes

existence of sorting

sum of output items In reports (X5 + X6 + X7)

sum of output Items In both files and reports
(X4 + X5 l X6 + X7)

the program itself, whose values can be determined at de-
tailed design, before actual coding begins. These quan-
tities are, mainly, the number of operators and the number
of unique variables and constants in the program. These
models do not address our basic concern of early cost es-
timation. However they are included here for the sake of
completeness of our discussions. A number of implemen-
tation level objective models for software size estimation
have been proposed in the literature, such as the work of
Fitsos [9] with the Software Science length equation, the
work of W a n g [37], and the work of Britcher and Gaffney
[5]. Details of these models are provided by Levitin [16]-
Hf31.

It is interesting to observe that, a l though more accurate
estimates could be expected from using these models, due
to more knowledge of the project which is available after
the detailed design phase (Fig. l), the results obtained by
Levitin do not support this expectation. Her conclusion in
[181 says that “program size cannot be estimated from the
number of program variables with required accuracy. The
problem is not our lack of knowledge of a right formula
but rather the simple fact that programs with the same
number of variables may differ considerably in their size. ”
This conclusion is quite similar to ours in our previous
considerat ions on specification level objective sizing
models.

III. THE NATURE OF SOFTWARE SIZE ESTIMATION

From the discussion carried out in the previous section
we may say that the models and techniques available to-
day for software sizing are not yet reliable enough to be
consistently used with existing cost estimation models.
On the one hand, subjective estimation, as it has been
used in the software industry, lacks a solid enough basis
to be able to provide sufficiently accurate sizing esti-
mates. On the other hand, the attempts which aim to relate

www.manaraa.com

514 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16, NO. 5, MAY 1990

the size of a system to the number of certain external at-
tributes of this system seem equally unable to be success-
ful.

The task of software size estimation has been compared
by Boehm [3] to the estimation of the number of pages of
a novel before the novel is actually written. Let us sup-
pose that a certain author is planning to write a novel
which has four central characters, who influence each oth-
ers’ lives profoundly, and twenty incidental characters.
The story happens in three different locations, it has a two
year time span, and includes five detailed flashbacks.
Suppose now that for some reason the editor wants to
know in advance how many pages this novel will have
after it is written. How could one estimate this quantity
based solely on the given information? It is clear that the
provided informatibn is not enough to make possible such
an estimate. In order to do that one would need additional
information such as the complete relation of the events to
take place in the novel, the detailed interrelationships be-
tween characters, the aspects on which the author wants
to focus, etc. In other words, specific knowledge about
the product would be necessary. Although the software
sizing problem might not have all of the aspects of the
novel sizing problem, the second gives us a good appre-
ciation of the first.

The considerations so far presented seem to point out
that specific knowledge about the nature of a software
system which size one wants to estimate is a must. This
includes knowledge of the system functions in terms of
scope, complexity and interaction. Boehm studied the un-
certainty in software project cost estimates as a function
of the life cycle phase of a product [3]. The graphic in
Fig. 2 shows the result of this study, which was empiri-
cally validated [3, Section 2 1. l] for a human-machine in-
terface component of a program. The exponential curve
in the figure resembles a “learning curve” and shows
clearly that the uncertainty in cost estimates is related to
the amount of knowledge (or lack of it) about the system
at each phase of the software life cycle. Although the re-
ferred study was done with respect to cost estimation as-
pects of a project, the same concept can be easily ex-
tended to size estimation aspects.

With this in mind, it is not difficult to understand that
subjective techniques fail because of lack of the necessary
level of system knowledge, and the major flaw with ob-
jective models is that the factors they intend to base their
estimates upon are not representative of all aspects of a
system which might influence its final size.

If we want to have accurate software estimates we need
new software sizing models which might be able to over-
come the weaknesses of the existing ones. Furthermore,
new models need also to solve the following problems:

1) We need specific knowledge of a system in its early
stages of development.

2) We need to be able to relate, as accurately as pos-
sible, this knowledge to the physical size of the program.

3) Given that the ultimate level of information about a
system in the early stages of its development is clearly

40A

20A

A

05A

025P

Relative Cost
Range

A(3 + exp (

/

-067n))

/ A

(3 + em-067n))

*
I 2 3 4 5 "

Life Cycle
Phase

Fig. 2. Software project cost estimation accuracy as a function of the life
cycle phase.

limited, we need to find a way to cope with this limitation
and still have reliable sizing estimates, as well as be able
to evaluate the degree of accuracy of the estimates.

The methodology we propose in this paper attempts to
address these issues. In order to capture and represent
knowledge about the system we use a functional require-
ments specification model, which enables decomposition
of complexity and provides for understandability of its
functionality. This model represents the system and as-
sociated environment as a number of semiautonomous ob-
jects acting asynchronously one upon another, just as the
real world is. This representation points to the object-ori-
ented approach for software development as a strong
match to relate the knowledge embedded in the functional
model to the final system size. This is so due to the fact
that the representation of a real world problem with an
object model will correspond to a great extent to the im-
plementation of the corresponding system in an object-
oriented programming environment. Finally, a statistical
analysis provides for the necessary uncertainty evalua-
tion. This analysis is based on the exponential curve of
Fig. 2, adapted for the software sizing problem.

IV. THE OBJECT MODEL FOR FUNCTION REQUIREMENTS
AND SOFTWARE SIZE ESTIMATION

Functional requirements are a must in any software sys-
tem development in order to make it possible for devel-
opers and customers to understand the system they are

www.manaraa.com

LARANJEIRA: SOFTWARE SIZE ESTIMATION

both developing and proposing. The days of top-of-the-
head functional specifications are already passed since the
great majority of current large complex software systems
demand a formal model to represent and document their
functionality. Modeling the functionality of a software
system is a task undertaken during the requirement anal-
ysis phase of the software life cycle.

The major role of a functional model is to provide for
the understandability of the system it represents. The main
problem here is how to decompose the system’s complex-
ity using a divide and conquer strategy. In [40], Yeh et
al. point to three powerful and desirable properties of a
functional model. They are as follows.

I) Abstraction: An abstraction represents several ob-
jects, suppressing details and concentrating on essential
properties. It allows one to represent a system in several
layers, called levels of abstraction [191, forming a natural
hierarchy. Each level sees the level below as a virtual ma-
chine, with specified properties and functionality.

2) Partition: The partitioning of a system represents it
as a sum of its parts, allowing one to concentrate on sys-
tem components one at a time. High level components
may also be partitioned, as well as its component parts.
This leads to the idea of levels of partitioning. A com-
ponent may also have an abstraction hierarchy. In this case
a system would have both a horizontal and a vertical de-
composition.

3) Projection: A projection of a system represents the
entire system with respect to a set of its properties. This
allows us to understand a system from different view-
points, separating particular facets. An example of that
could be the descriptive geometry description of a three-
dimensional physical object which is composed of verti-
cal and horizontal two-dimensional projections.

The object-oriented model for functional specification
that we propose reflects these characteristics as we will
discuss later. A number of researchers (Booth [4], Stark
and Seidewitz [29]-[31]), have contributed to a general
object-oriented methodology. Although they have con-
centrated somewhat more on design aspects of the object-
oriented life cycle, the specification model we adopted
here was largely influenced by their ideas.

In the proposed object model, each entity of the prob-
lem domain, or real world, is represented by an object.
An object may be a person, a machine, a sensor, etc. Each
object is composed by a state that characterizes it, and a
set of functions, called methods, that manipulate the data
corresponding to its state [32]. As a consequence, we may
view an object as having two projections. One is the data
structure that represents its state. The other is composed
by the functions that determine its behavior. An object
acts upon another by requesting the second object to per-
form a certain function on its data (state) and return some
results to the requesting object. No object can act directly
on another object’s data. This concept is known as infor-
mation hiding [22]. The fact that an object requests some
action of another is represented in the model by an arrow
directed from the object which requests the action to the

515

object which performs the action. Therefore, an object is
fully characterized by its state, its internal functions and
its interactions with other objects (we will talk later about
a fourth characteristic of an object-nonfunctional re-
quirements it possibly needs to meet). We believe that a
real world problem is easily represented by a set of ob-
jects that interact with one another.

At its top level a system may be represented by a single
object that interacts with external objects. Beginning at
this level each object of the system may be refined into
component objects on a lower level of partitioning. This
partitioning may continue until objects are completely de-
composed into primitive objects. A primitive object would
be one in which internal state (data) and corresponding
methods (internal functions) are simple enough, in terms
of complexity and size, to be considered an undecompos-
able entity of the system. The result of this process is a
set of levels of partitioning that represents the system (Fig.
3). Furthermore, each partition may be viewed as a set of
layers (or levels of abstraction). Each layer defines a vir-
tual machine which provides service for senior layers. Any
layer can request operations in junior layers but never in
senior layers (Fig. 4). It should be noted that not all ob-
jects in a certain level of partitioning will be amenable for
further partitions.

A specification effort should begin by identifying the
entities in a problem domain and their interrelationships,
and continue further by detailing the functions performed
by and the internal state of each object. The next step
would be to identify which objects could allow partition-
ing and the layers of abstraction in each partitioning level.
A major advantage of such specification object model is
that it makes possible a direct and natural correspondence
with the real world, since problem domain entities are ex-
tracted directly into the model without any intermediate
buffer such as traditional data flow diagrams [20]. This
also makes the model quite understandable, which is an
essential characteristic of a functional specification model.

The above considerations lead us to the fact that an ob-
ject-oriented representation of a system is a more suitable
model for accurate software size estimates than one
achieved through a more traditional approach. The point
here is that the implementation of the system, provided
that it is also object-oriented, will match to a great extent
its functional specification. This matching has been ob-
served by Seidewitz in [31], where he reports that some
projects designed and developed at Goddard Space Flight
Center with an object-oriented approach, turned out to
have a very smooth transition from specifications to code.
We should notice that this matching does not necessarily
occur with other specification methods such as common
data flows, state transition diagrams, or data-oriented
models. Although some of these models may also be used
to specify systems in a hierarchical fashion, they lack the
above mentioned correspondence between specification
and implementation that favors the object-oriented model
as a better choice for providing support for better software
size estimates.

www.manaraa.com

516 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16. NO. 5. MAY 1990

Fig. 3. Levels of decomposition (partitioning).

v1rtuai
MachIne 1

Virtual
MachIne 2

Fig. 4. Layers of abstraction.

We will not go into further detail about this object-ori-
ented functional model, since our main goal here is to
show its advantages for early software size estimation. In
this scenario it is worth noting that we will be much more
interested in the partitioning aspect of the objects of a sys-
tem than in the aspect of layers of abstraction, although
both aspects are needed when the specifications are de-
rived. Whereas the second aspect is not needed for size
estimation it will be very important concerning the devel-
opment of the system.

The size estimation process of a system, whose func-
tional model is characterized by a certain number of levels
of decomposition (partitioning), may be summarized in
the following steps:

1) Beginning with the lowest level of decomposition
evaluate the size of each object. This evaluation should
consider each function executed by the object, as well as
the code corresponding to the data structures which will
hold its internal state.

2) Continue to higher levels taking into account that
higher level object sizes may receive contributions of
component objects as well as of its own data and func-
tions.

3) It may be necessary to include “utility objects” to
account for housekeeping functions.

4) The estimated size of the whole system will be the
sum of the size estimates of the objects in the top level of
decomposition plus the size of possibly existing “utility
objects. ’ ’

It has been advocated in the literature [181 that one can-
not expect to have reliable software size estimates based
on specification models. Weinberg’s experiment [38] is
usually taken as the basis for this thesis. In that experi-
ment, five programmer teams came up with considerably
different program sizes for the same functional specifica-
tions. However, it should be said clearly that those teams
were given quite different objectives during the develop-
ment effort. One team was asked to minimize the amount
of memory required for the program, another was to op-
timize program understandability, another was to mini-
mize program length, another was to minimize the devel-
opment effort, and the last one was to produce the clearest
possible output. As it can be seen, although the general
problem statement was the same for the five teams, they
had quite different nonfunctional specifications. The con-
clusion we reach is that very restrictive nonfunctional
specifications might influence software size. If some of
them are present in a development, they should be con-
sidered in the size estimation process. This fact does not
invalidate the sizing technique we present here, since our
proposition is that estimates should be based on the avail-
able knowledge of the system. Whereas we consider proj-
ect decomposition and functional specifications as major
tools for detailing and representing system knowledge,
other sources of knowledge such as nonfunctional re-
quirements might also provide a contribution. A way to
do that would be, for instance, to add to the characteriza-
tion of each object a fourth element (other than data,
methods or interactions) that would be called nonfunc-
tional constraints. This would be a statement of restrictive
nonfunctional requirements (if any) each object needs to
fulfill. This information would also be used in the size
estimation of that object.

Finally, we would like to point out that it is our belief
that the most suited people for estimating software size
are the future developers of the system. One reason for
this is that each programmer has his own personal pro-
gramming style, which often influences software size [171.
Another reason is that system developers, such as design-
ers and programmers, are the people with the best con-
ditions for accounting for the influence of nonfunctional
specifications on system size.

V. SOFTWARE SIZING: A STATISTICAL MODEL

Fig. 2 shows a plot of the accuracy of software project
estimates as a function of the software life cycle phase.
This resulted from Boehm’s study of projects in TRW.
The meaning of this graph is that there is a very small
probability that cost estimates will be out of the bounda-
ries represented by the two converging exponential curves
shown in the figure. If we put this in an analytic form we

www.manaraa.com

LARANJEIRA: SOFTWARE SIZE ESTIMATION

have

x(n) < = A * (3 + e -B*,l) (upper exponential)

x(n) >=
A

3 + e -Ls*n (lower exponential) .

Here x(n) is a cost estimate, A is the actual cost of the
system, and n relates to the phase in the life cycle when
the estimate was done. The value of B, in that experiment
found to be 0.67, determines how fast estimates con-
verge, that is, what is the improvement in the accuracy of
estimates as we go from one phase to the next in the soft-
ware life cycle.

Whereas Fig. 2 was primarily sketched with cost esti-
mation in mind, we can extend the same concept to the
problem of estimating software size. This extension is
based on the fact that both cost and size estimates rely on
the available knowledge of the system, as discussed be-
fore.

Fig. 5 shows the learning curve concept adapted to soft-
ware size estimation. This figure differs from Fig. 2 in
some aspects. Rather than relating size estimates through-
out life cycle phases, it reflects the variation of size esti-
mation accuracy, as one increasingly details the func-
tional specification of the system by means of object de-
composition, during the requirements analysis phase of
the software development process. A feasibility phase is
considered to be completed at this time. Therefore, the
crossing points between the boundary exponentials and
the vertical axis will be different from Fig. 2, where the
feasibility phase is still considered. The value of II is now
related to the level of decomposition of system objects in
the specification based on which the estimate was done.
In this scenario, II = 0 means that no functional specifi-
cation was carried out yet, IZ = 1 means that a top level
specification has been accomplished, n = 2 means that
the objects in the top level were partitioned one level be-
low, and so forth. The value of B accounts for how fast
estimates converge to the actual size A, as we pursue in
decomposing system objects down to lower and lower
levels.

The hypothesis we base this upon is that the proposed
object specification model will provide for a sufficiently
disciplined methodology for capturing system knowledge
as to cause estimates to converge smoothly to the actual
size of system as further levels of object decomposition
are reached. This means that an estimate made at a certain
level of decomposition is not unrelated to previous esti-
mates, obtained with less detailed levels of decomposi-
tion. This is easily seen if we consider that when going a
level down in the decomposition process one just carries
out the decomposition of objects in the current lower level.
In this scenario, the amount of knowledge corresponding
to undecomposed objects (not all objects will be decom-
posable) will remain the same, and the new knowledge
achieved by the increased detail of decomposed objects
will be a refinement of some less accurate knowledge that
was already available before. The conclusion we reach is

2 OA

A

0 5, x +
Fig. 5. Software size estimation accuracy as a function of object decom-

position level in the functional model.

that, although extraneous estimates may show up here and
there in the process, in general the pattern of estimates
should converge monotonically to the actual size value.
These considerations point to possible patterns of project
size estimates as those shown in Fig. 6.

Additional important information, needed for the ap-
plication of this technique, is how to obtain the value of
B, which sets the rate for the exponential decay of upper
and lower boundary curves of Fig. 5. After a lot of study
and experimentation it is now well agreed upon among
software engineering researchers and practitioners that any
software metrics model needs to be tunned to the specific
environment where it will be applied. In this work, the
value of B is exactly the one which will incorporate with
the estimating process the characteristics and previous ex-
periences of the organization where a particular software
project will take place. It should be calculated by analyz-
ing a representative number of already accomplished proj-
ects with sizes estimated by using the proposed method-
ology. One would plot the values of project size estimates
as a function of n, the level of decomposition of objects
in the functional model, and look for the exponential
boundary curves which are the “envelopes” for the entire
range of estimates. This can be done by curve fitting sta-
tistical techniques.

Going further in the development of the model, we have
that, for a particular estimate x (n), evaluated considering
n levels of objects decomposition, the following will hold

x(n)<=A*(l +e -‘* ”) (upper exponential)

and

x(n) >=
A

1 + ePB*’
(lower exponential) .

www.manaraa.com

518 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16. NO. S. MAY IYYO

I * I m

n ”

Fig. 6. Possible patterns for size estimates (assuming that subsequent es-
timates are not independent from one another)

These relations yield

A >= 44 e -B*n
1 + e-B*n

and A <=~(a)*(1 - 1

which can be rewritten as

A >= U(n) and A <= L2(n)
where

44
L1(n) = 1 + e-B*n

and

L2(n) = x(n) * (1 + e-B*n)

and finally,

U(n) <= A <=,52(n).

Given B and n, we can also calculate a confidence interval
for the estimates. This confidence interval turns out to be
independent of A, the actual program size. The negative
and positive deviations, dl (n) and d2 (n), which char-
acterize the confidence interval, can be calculated as

A

dl(n) =
1 + e-B*n - A

A

and

d2(n) = A * (1 + e-B*n) - A
A

working with the above expressions we get

dl(n) = -e-B*n and d2(n) = eeB*“. 1 + e-B*n

As d 1 (n) and d2 (n) are independent of A, given a cer-
tain B we can plot their values as a function of n. Table
VI shows the values of dl (n) and d2(n) for B = 0.47,
with n varying from 1 to 6. We notice that the positive
deviation is generally larger than the negative one, ac-
counting for the biasing towards underestimation ob-
served in reported software sizing experiences.
petted value for a size estimate given a certain n
be

where

The ex-
= N will

Llmax(N) = max [Ll(n)] forn <= N

and

L2,i,(N) = min [L2(n)] for n < = N.

For n = N there will be a very large probability that the
actual program size A will be within the interval

[J&in(N), Knax(N)]
where

Emin = E(N) * (1 + dl(n))

and

E,&N) = E(N) * (1 + d2(n)).

It is interesting to note that, since the expected negative
and positive deviations, d 1 (n) and d2 (n), are indepen-
dent of the actual size A, it is possible for one to know in
advance the number of decomposition levels needed to
achieve a desired accuracy. This fact provides the method
with a criterion by which one can know whether it should
or not be used in a particular project to be developed in a
given organization. There will be cases when this tech-
nique will not be worth using. This will happen for small
values of B, such that the convergence of the estimates
with n will be so slow that, even if one gets to the lowest
possible level of decomposition, the confidence interval
will not satisfy the accuracy required for the particular
project. The decision of using or not this technique will
depend on the value of B, as well as on the required ac-
curacy for a particular project cost estimation.

Detailing the method, we would have the following
steps in the estimation process:

1) Given the value of B, plot in a table the values of
dl (n) and d2(n) as a function of Iz.

2) Given the required accuracy for the estimation,
check in that table what is the necessary level of object
decomposition to go through in the functional specifica-
tion model. Call it N.

3) Work the correspondent functional specifications

www.manaraa.com

LARANJEIRA: SOFTWARE SIZE ESTIMATION 519

TABLE VI TABLE VII
PLOT OF NEGATIVE AND POSITIVE DEVIATIONS AS A FUNCTION OF n, FOR E SIZE ESTIMATION CALCULATIONS FOR PROJECT I, WITH B = 0.47

= 0.47

dl(n)

-0 385

-0281

-0 196

-0 133

-0 087

-0 056

d2(n)

0 625

0391

0 244

0 153

0 095

0 060

one level of decomposition down. If this is the first step,
model the system with top level objects.

4) Estimate system size as suggested in Section IV,
yielding x (n) .

5) Calculate Ll (n), L2(n), Ll,,,(n) and L2,i,(n).
6) Calculate the expected system size E(n), and the

maximum and minimum expected sizes, E,,,(n) and
Emin (n), for this level of decomposition n.

7) If n = N stop. Consider E,i”(N), E(N), and
E,,, (N) as the minimum, expected, and maximum val-
ues for system size. If II C N and the objects in the func-
tional model cannot be decomposed one more level, stop
and disregard results so far achieved. The method will not
provide enough accuracy in this case. If objects still allow
decomposition, go one step further to item (4).

As the proposed method is very sensitive to the value
of B, it is important to consider that this value will not be
static for a particular environment. In other words, esti-
mators may “learn” how to come up with better estimates
by getting more used to the methodology and the environ-
ment characteristics, and by relying more and more on the
experiences of past projects. With this in mind, it would
be wise to recalculate B when comparison between esti-
mates and actual size values shows that the method is
yielding too broad confidence intervals in face of the in-
creased accuracy of estimates.

We can illustrate the application of the proposed tech-
nique with two examples. Project I is a relatively small
business application. The actual size of the system was
found to be 10,000 lines of code, after the project was
accomplished. The value of B for the corresponding or-
ganization has been evaluated as 0.47, and, as the entire
cost of the project is relatively low, an overall accuracy
of 25% was considered acceptable. Looking at Table VI
we notice that we will need up to three levels of decom-
position in the functional model. Table VII shows the val-
ues of the quantities calculated in the estimating process,
and Fig. 7 presents a graph of the expected size E(n >
provided by the model. We can see that the first estimate
shows a gross discrepancy with respect to the actual
achieved size, but subsequent ones converge smoothly to
the value of A. By the end of the process the expected size
in lines of code is 10,590, with possible deviation values
of -2076 and +2584.

E(n)

I0,000 (I * expc-0 47n))

I 2 3 n

Fig. 7. Learning curve for Project I size estimates E(n).

Project II, carried out in the same company, corre-
sponds to the development of an operating’system. This
project, required an accuracy of 10% due to organization
budget constraints at the time. Since B is the same as in
Project I, Table VI shows that functional specifications
should go through 5 levels of object decomposition. Table
VIII presents the values calculated in the estimating pro-
cess. The expected size value was 37,505 lines of code,
and deviation values -3263 and + 3563. As actual pro-
gram size was found to be 40,000 lines of code, we can
see in Fig. 8 that model estimates E(n) converge
smoothly to A as 12 increases.

VI. RELATING SIZE TO COST

As seen in the previous section, the size estimation
method proposed in this paper allows one to estimate sys-
tem size with a specified confidence interval. This confi-
dence interval depends on the value of B, the exponential
decay of the size estimates exponential “envelope” curve,
and on the value of n, the level of object decomposition
in the functional specifications model. Since our ultimate
goal in estimating program size is to be able to predict
program cost as accurately as possible, it would be nice,
now, to relate our size estimation results to cost. In other
words, we would like to know how much to budget for a
certain software project and what level of variance should
be expected from this estimation. In order to do that we
can use, for instance, the COCOMO model [3] to calcu-
late the estimated development cost of Project I and Proj-
ect II, the examples of the previous section.

COCOMO predicts project cost, in man-months, pri-
marily based on the estimated number of thousands of
lines of code for the system. This nominal estimation is
then adjusted by a number of effort multipliers, whose
overall product is called Effort Adjustment Factor (EAF).
COCOMO effort multipliers are summarized in Table IX.
Observation of the nature of effort multipliers shows that
the necessary system knowledge for their evaluation is

www.manaraa.com

520 IEEE TRANSACTIONSON SOFTWARE ENGINEERING, VOL. 16. NO. 5. MAY 1990

TABLE VIII
SIZEESTIMATIONCALCULATIONSFORPROJECTII , WITHB = 0.47

” x(n) Llcn) LZ(ll) LI (“1 L2 (ITI
max rnlr!

I 28,000 17,231 45,500 / 7.23 I 45,500

2 32,500 23.01 I 45,901 23.01 I 45.90 I

3 34,700 27,891 43.712 27,891 43, I72

4 35,200 30,540 40.571 30,540 40,571

5 37,350 34,098 40,912 34.098 40,912

40,000 (I + exrl-0 47n))

i cn,
max

9,604

3,472

8,670

5,796

3,563

I 2 3 4 5 -i

Fig. 8. Learning curve for Project II size estimates E(n).

certainly available by the requirements/specifications
. phase of the software life cycle, i.e., at n = 0.

For these examples, as we use COCOMO, our assump-
tions will be rather simple, since our purpose here is not
to detail COCOMO itself, but to relate the presented size
prediction method to cost estimation. In this scenario, we
can consider the top level objects in the functional model
as the system components referred to in Intermediate CO-
COMO. For the sake of simplicity we assume that effort
multipliers are the same for all system components (top
level objects) in Project I and Project II. This assumption
allows us to view each of these objects, for cost estima-
tion purposes, as having just one component. We also as-
sume that both systems are developed from scratch. An-
other point is that the development team has extensive
experience in working with related projects, allowing us
to classify these projects as organic, in COCOMO ter-
minology [3]. Intermediate COCOMO formulas for effort
estimation of organic projects are

(MM)“om = 3.2 * (KEDSI)‘.‘~

(MM)adj = (MM)nom * EAF
EAF = I1 EM,

where KEDSI (thousands of expected delivered source in-
structions) is the estimated program size in thousands of
lines of code, and the EMi’s are the effort multipliers.

Table X and Table XI show the calculated effort ad-
justment factor (EAF) for Project I and Project II, respec-
tively. Table XII and Table XIII summarize the cost es-
timation process for Project I and Project II, respectively.
The KEDSI values in these tables estimated using the pro-
posed sizing method. In order to express project cost in
dollars, the average equivalence in dollars per man-month
was also considered for each project.

TABLE IX
COCOMO EFFORTMULTIPLIERS

TABLE X
EFFORTADJUSTMENTFACTORCALCULATIONFORPROJECTI

EAF 067

TABLE XI
EFFORTADJUSTMENTFACTORCALCULATIONFORPROJECTI I

TABLE XII
COSTESTIMATIONFORPROJECTI

component KEDSl EAF MM MM SK/MM Cost (SK)
"Om adI

Ml"lnl"rn Ml"lnl"rn
851 067 30 20 so to,54

Text
P,,‘,w"g Expected Exp=?tted

System 1059 067 38 26 50 12774

MZXllTl”lT MaXlm”Ul
,371 067 48 32 50 ,606,

The size estimation technique proposed in this paper
enables us to say that the ultimate size of Project I will be
10.59 KEDSI, with possible deviation interval of -2.08
KEDSI, +2.58 KEDSI. For Project II the expected final
size is 37.51 KEDSI, with possible deviation interval of
-3.26 KEDSI, +3.56 KEDSI.

As a consequence, we may also say that the cost of
Project I will be $127,740 (dollars), with possible devia-

www.manaraa.com

LARANJEIRA: SOFTWARE SIZE ESTIMATION 521

TABLE XIII
COST ESTIMATION FOR PROIECT II

tion interval of -$26,200 (dollars), +$32,870 (dollars),
and the cost of Project II will be $902,140 (dollars), with
possible deviation interval of - $82,400 (dollars),
+$90,100 (dollars). This type of fol low-through of dol-
larizing fulfills the manager’s needs of cost and risk as-
sessment.

VII. CONCLUDING REMARKS

A technique for software size estimation has been pro-
posed. The basis for estimates, when using this method,
is the available knowledge of the considered system. In
order to capture and represent this knowledge, an object-
or iented functional model has been adopted. This func-
tional model provides for a disciplined methodology for
decomposing system complexity. This methodology is the
key in the process of detailing the functionality of the sys-
tem in order to enable estimators to achieve more reliable
estimates. The object-oriented paradigm plays an impor-
tant role in this process since it embeds a strong corre-
spondence between specifications and implementation.
This characteristic makes it easier to relate an object func-
tions, sometimes called methods, and data to the amount
of code necessary to implement it.

In order to relate previous exper ience with size esti-
mation in a certain organization, the proposed sizing tech-
n ique incorporates a statistical approach. This approach
also enables one to have an objectively der ived conf idence
interval for the estimates, what has been a desire among
software metrics researchers.

The presented methodology is still subjective, since it
ultimately depends on expert estimations. Nevertheless,
this subject iveness is controlled by disciplined capturing
of system knowledge and statistical correlation with past
experience. The methodology also provides a criterion
that enables one to know when the amount of subjective-
ness related to the estimates prevents its use. Also, certain
issues like nonfunct ional requirements inf luence and low
biasing in software estimations have been considered in
this sizing method.

Finally, we saw that the utilization of this sizing tech-
n ique with cost estimation models enables these models
to predict system cost with known accuracy, what pro-
vides for better controlled and managed software projects.

ACKNOWLEDGMENT

W e are thankful to Dr. G. Cobb (with Lockheed, Aus-
tin), for various insights concerning the ideas upon which

this paper is built, and to the reviewers, for their helpful
suggest ions.

REFERENCES

[1] A. .I. Albrecht and J. E. Gaffney, “Software function, source lines
of code, and development effort prediction: A software science vali-
dation,” IEEE Trans. Software Eng., vol. SE-9, no. 6, pp. 639-647,
Nov. 1983.

[2] J. W. Bailey and V. R. Basili, “A meta-model for source develop-
ment resource expenditures,” in Proc. Fifth Int. Conf. Software En-
gineering, 1981, pp. 107-l 16.

[3] B. Boehm, Software Engineering Economics. Englewood Cliffs, NJ:
Prentice-Hall, 1981.

[4] G. Booth, “Object-oriented development,” IEEE Trans. Sofrware
Eng., vol. SE-12, no. 2, pp. 211-221, Feb. 1986.

[5] R. N. Britcher and F. E. Gaffney, “Reliable size estimation for soft-
ware decomposed as state machines,” in Proc. COMPSAC 1985, pp.
104-106.

[6] A. Bryant and J. A. Kirkham, “B. A. Boehm software engineering
economics: A review essay,” ACM SIGSOFT Software Eng. Notes,
vol. 8, no. 3, pp. 44-60, July 1983.

[7] S. D. Conte, H. E. Dunsmore, and V. Y. Shen, Sofrware Engineering
Metrics and Models. New York: Benjamin/Cummings, 1986.

[8] F. R. Freiman and R. E. Park, “Price-software mode1 version 3: An
overview,” in Proc. IEEE-PINY Workshop Quantitative Software
Models, Oct. 1979, pp. 32-41.

[9] G. P. Fitsos, “Vocabulary effects in software science,” in Proc.
COMPSAC 1980, pp. 751-756.

[lo] S. Gross, K. B. Tom, and E. E. Ayers, “Software sizing and cost
estimation study,” in Proc. 19th Annu. Dep. Defense Cost Analysis
Symp., Xerox Training Center, Leesburg, VA, Sept. 17-20, 1985.

1111 J. R. Herd, J. N. Postak, W. E. Russel, and K. R. Stewart, “Soft-
ware cost estimation study-Study results,” Doty Associates, Inc.,
Rockville. MD. Final Tech. Rep. RADC-TR-77-220, June 1977

[12] M. Itakura and k. Takayanagi, ‘*‘A model for estimating program size
and its evaluation,” in Proc. Sixth Int. Conf. Sofware Engineering,
Sept. 1982, pp. 104-109.

[13] K. A. Jamsa, “Object-oriented design vs structured design-A stu-
dent’s perspective, ” ACM SIGSOFTSoftware Eng. Notes, vol. 9, no.
1, pp. 43-49, Jan. 1984.

[14] R. W. Jensen, “A comparison of the Jensen and COCOMO schedule
and cost estimation models,” m Proc. Int. Sot. Parametric Analysis,
1984, pp. 96-106.

[15] L. Ledbetter and B. Cox, “Software ICs,” Eyre, vol. 10, no. 6, pp.
307-316, June 1985.

[16] A. V. Levitin, “On predicting program size by program vocabu-
lary,” in Proc. IEEE COMPSAC 1985, pp. 98-103.

[17] -, “How to measure program size and how not to,” in Proc. IEEE
COMPSAC 1986, pp. 314-318.

[181 -, “Investigating predictability of program size,” in Proc. IEEE
COMPSAC 1987, pp. 231-235.

[19] B. Liskov and J. Guttag, Abstraction and Specification in Program
Development. Cambridge, MA: MIT Press, 1986.

[20] T. de Marco, Structured Analysis and System Specijication. Engle-
wood Cliffs, NJ: Prentice-Hall, 1979.

[21] D. L. Pamas, “A technique for the specification of software modules
with examples,” Commun. ACM, vol. 15, pp. 330-336, May 1972.

[22] -, “On the criteria to be used in decomposing systems into mod-
ules,” Commun. ACM, vol. 15, pp. 1053-1058, Dec. 1972.

[23] G. A. Pascoe, “Elements of object-oriented programming,” Byte,
vol. 11, no. 8, pp. 139-144, Aug. 1986.

[24] R. Pressman, Software Engineering: A Practitioner’s Approach.
New York: McGraw-Hill, 1982.

[25] L. H. Putman, “A general empirical solution to the macro software
sizing and estimation problem,” IEEE Trans. Software Eng., vol.
SE-4, no. 4, pp. 345-361, July 1978.

[26] L. H. Putnam and A. Fitzsimmons, “Estimating software costs,”
Dutamation, pp. 189-198, Sept. 1979; cont inued in Datamation, pp.
171-178, Oct. 1979, pp. 137-140, Nov. 1979.

[27] C. V. Ramamoorthy, A. Prakash, W. Tsai, and Y. Usuda, “Software
engineering: Problems and perspectives,” Computer, pp. 191-209,
Oct. 1984.

[28] D. T. Ross and K. E. Scoman, “Structured analysis for requirements
definition, ” IEEE Trans. Software Eng., vol. SE-3, no. 1, Jan. 1977.

[29] M. Stark and E. Seidewitz, “Towards a general object-oriented de-

www.manaraa.com

522 IEEE TRANSACTIONS O N SOFTWARE ENGINEERING. VOL. 16. NO. 5. MAY 1990

velopment methodology,” Goddard Space Flight Center, Greenbelt,
MD. Internal Rep., 1986.

[30] -, “Towards a general object-oriented ADA life-cycle,” in Proc.
Joint Ada Conf., Mar. 1987, pp. 213-222.

[3l] E. Seidewitz, “General object-oriented software development: Back-
ground and experience, ” in Proc. 21st Hawaii ht. Conf. System Sci-
ence, Jan. 1988.

1321 M. Stefik, “Object-oriented programming: Themes and variations,”
AI Msg., pp. 40-62, Jan. 1986.

[33] C. R. Symons, “Function point analysis: Difficulties and improve-
ments,” IEEE Trans. Software Eng., vol. 14, no. 1, pp. 2-l 1, Jan.
1988.

[34] R. C. Tausworthe, “Deep space network software cost estimation
model,” Jet Propulsion Lab., Pasadena, CA, Publ. 81-7, 1981.

[35] L. Tesler, “Programming experiences (with object-oriented lan-
guages),” Byte, vol. 1 I, no. 8, pp. 195-206, Aug. 1986.

[36] C. E. Walston and C. P. Felix, “A method of programming mea-
surement and estimation,” IBM Syst. J., vol. 16, no. 1, pp. 54-73,
1977.

1371 A. S. Wang, “The estimation of software size and effort: An ap-
proach based on the evolution of software metrics,” Ph.D. disserta-
tion, Dep. Comput. Sci., Purdue Univ., Aug. 1984.

1381 G. W. Weinberg and E. L. Schulman, “Goals and performance in
computer programming,” Human Factors, vol. 16, no. 1, pp. 70-77,
1974.

[39] R. W. Wolverton, “Software costing,” in Software Engineering. C.
R. Vick and C. V. Ramamoorthy, Eds. New York: Van Nostrand,
1981.

1401 R. T. Yeh, P. Zave, A. P. Conn, and G. E. Cole, Jr., “Software
requirements: New directions and perspectives,” in Software Engi-
neering, C. R. Vick and C. V. Ramamoorthy, Eds. New York: Van
Nostrand, 1981.

Luiz A. Laranjeira (S’89) was born in Belo
Horizonte, Brazil, in 1958. He received the B.S.
degree from the University of Brasilia, Brasilia,
Brazil, in 1979, and the M.Sc. degree from the
Federal University of Rio de Janeiro, Rio de
Janeiro, Brazil, in 1983, both in electrical engi-
neering.

From 1984 until 1987 he was with the Research
and Development Center for Communications,
Brasilia, as Software Manager of the Division of
Digital Projects. Since 1987 he has been a grad-

uate student with the Department of Electrical and Computer Engineering
of the University of Texas at Austin. His research interests are software
engineering, parallel algorithms, and fault tolerance.

Mr. Laranjeira is a member of Tau Beta Pi.

www.manaraa.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

