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Software Size Estimation of Object-O riented Systems 
LUIZ A. LARANJEIRA, STUDENT MEMBER, IEEE 

Obstruct-software size estimation has been the object of a lot of 
research in the software engineering community due to the need of 
reliable size estimates in the utilization of existing software project cost 
estimation models. This paper discusses the strengths and weaknesses 
of existing size estimation techniques, considers the nature of software 
size estimation, and presents a software size estimation model which 
has the potential for providing more accurate size estimates than ex- 
isting methods. The proposed method takes advantage of a character- 
istic of object-oriented systems, the natural correspondence between 
specification and implementation, in order to enable users to come up 
with better size estimates at early stages of the software development 
cycle. Through a statistical approach the method also provides a con- 
fidence interval for the derived size estimates. The relation between the 
presented software sizing model and project cost estimation has also 
been considered. 

Index Terms-Functional specification, object-oriented systems, 
software cost estimation, software size estimation. 

I. INTRODUCTION 

T HE software crisis has focused the attention of the 
software engineering community on the research of 

disciplined techniques for software development in the at- 
tempt to reduce and control the alarming growth of soft- 
ware systems development and maintenance costs. In par- 
ticular, the commonly noticed tendency in software 
systems development for gross cost overruns and unde- 
sirable project delays has caused a lot of work to be done 
in developing project cost and effort estimation models. 
Accurate cost and scheduling estimations provide highly 
valuable aid in a number of management decisions, bud- 
get and personnel allocations, and in supporting reliable 
bids for contract competition. 

Cost estimation models today available for the software 
engineering practitioner include: the Walston-Felix model 
[36], the Doty model [ 111, the Putnam model [25], the 
RCA PRICE S model [8], the Bailey-Basili model [2], 
the COCOMO (COnstructive Cost Model) model [3], the 
SOFTCOST model [34], and, recently, the Jensen model 
[ 141. An overview of each of these models is presented in 
[7]. In [3], a complete description of the COCOMO model 
together with a very detailed approach for its utilization 
on the daily life of an organization can be found. The 
discussion we carry out here will be generally valid for 
any of the mentioned cost models, although we concen- 
trate something more on COCOMO in terms of examples 
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and details due to a more complete documentation avail- 
able for this model. 

The reception of cost estimation models in the software 
community has been usually good. Managers feel more 
comfortable using estimation models than just relying on 
rules of thumb and entirely subjective judgments when 
planning budgetary and personnel resources for a new 
project. Even though estimation models have some limi- 
tations that managers need to be aware of [3], [24], [7], 
they may be viewed as valuable tools in the software en- 
gineering process. 

A common point concerning the above mentioned 
models is that they base their effort and scheduling pre- 
dictions on the estimated size of the software project at 
hand, in terms of number of lines of code (LOC), or thou- 
sands of lines of code (KLOC). Generally the effort esti- 
mation is based upon an equation similar to 

E = A + B*(KLOC)C 

where E stands for estimated effort (usually in man- 
months), A, B, and C are constants, and KLOC is the 
expected number of thousands of lines of code in the final 
system. From the above equation it is easy to see that a 
given percentage error in the size (KLOC) may cause an 
even larger percentage error in the estimated effort. For 
instance, in COCOMO a 50% error in the size estimate 
will roughly result in a 63% error in the effort estimate. 
In other terms, size estimation error causes cost estima- 
tion error, since cost estimates are derived based on effort 
prediction. 

Existing software cost estimation models assume that a 
plans and requirement analysis phase (Fig. l), and con- 
sequently the system specifications, has been carried out 
before the model is applied. Their cost and schedule es- 
timations cover the subsequent phases of the software de- 
velopment cycle (product design, detailed design, coding, 
integration, and test). Maintenance costs are estimated in 
a slightly different way, since by maintenance time the 
system is already entirely developed and its actual size is 
known. 

It is obvious that, concerning development cost esti- 
mation, if a model would only produce effort estimates, 
let us say, after the detailed design or coding phase, such 
an estimation would have relatively low value for the 
project management and control. We surely need esti- 
mates in the early stages of the software life cycle in order 
that these estimates may cause a real impact on the devel- 
opment process. As a consequence, size estimations must 
be provided in the early phases of the software life cycle. 
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As an example, let us consider a software system to be 
developed for secure message communication. Project 
scope indicates a microprocessor based system linked in 
a network, providing for communication between govem- 
ment agencies. Evaluation of the system indicates the fol- 
lowing major functions: user interface and control facili- 
ties, edition module, encryption/decryption modules, and 
communication modules. Table I shows the size estimates 
for each major function and for the entire system. 

DetaIled Design 

A 

Y 

Coding/ 
Unit Test 

4 1 
Integration/Test 

Fig. 1. Software life cycle phases. 

Despite the above stated need, existing cost estimation 
models do not provide an integrated, detailed rationale 
and guidelines for producing system size estimates with 
required accuracy. This inconsistency has been pointed 
out by Bryant and Kirkham [6]. 

This paper attempts to focus on the problem of early 
size estimation. We will consider previously proposed size 
estimation techniques, discuss the nature of software size 
estimation and present a technique, based on an object- 
oriented specification model (for an object-oriented soft- 
ware implementation) and on statistical methods, that 
might turn out to provide more reliable software size es- 
timates. 

II. EXISTING SOFTWARE SIZE ESTIMATION TECHNIQUES 

Several approaches for predicting software size have 
been proposed in the literature. They could be divided in 
two subsets: subjective techniques and objective models. 

A. Subjective Techniques 
The most popular sizing technique used is the PERT 

method where practitioners rely on expert judgment to es- 
timate the ultimate size of a project. Such estimates are 
based on analogy with projects of similar characteristics, 
experience, or, when all else fails, on the intuition of the 
estimators [24]. 

In this approach the project is decomposed in its major 
functions, during the plans and requirements phase of the 
software life cycle (Fig. l), and an estimation is made for 
each of them. The estimated size of the total system will 
be the sum of the estimates of the composing functions 
1391. 

Putnam and Fizsimmons [26] suggested a method for 
adding some objectiveness to this technique. The ex- 
pected number of lines of code (S;) for each function is 
calculated as a weighted average of the optimistic (Oi), 
the most likely (M,), and the pessimistic (Pi) size esti- 
mates. The estimated size of the total system (S, ) will 
again be the sum of the estimated function sizes. For ex- 
ample 

Si = 
Oi + 4Mi + Pi 

6 
S, = C Si * 

Considering that there is a very small probability that 
the actual size values do not fall in between the optimistic 
and pessimistic estimates, the deviation for each function 
estimate (Oi) and for the total system size estimate (0,) 
will be 

D, = Oi - pi 
1 6 

D, = (c D;)“2. 

These equations are based on a beta distribution which 
means that 68% of the time the real size of the final soft- 
ware should be within S, + D, and that the estimates are 
unbiased toward either underestimation and overestima- 
tion. Table II extends the simple expert judgment exam- 
ple using this PERT approach. 

Despite the common utilization of subjective tech- 
niques for early software size estimation, two points can 
be clearly observed which expose the weaknesses of such 
an approach: 

1) Experience has shown that expert judgment varies 
widely due to psychological and personal factors, and 
usually cannot provide estimates with required accuracy. 
Reference [7] quotes a study performed by Yourdon Inc., 
where several experienced managers estimated the size of 
16 software projects on the basis of the complete speci- 
fication for each project. The average expert predictions 
are presented in Table III together with the actual size of 
each software project, after completed. It may be easily 
seen that the discrepancy between estimated and real size 
values is large enough to raise questions about the appli- 
cability of the method. 

2) The assumption, considered in the PERT technique, 
that estimates are unbiased toward underestimation or 
overestimation, is not confirmed by current experience. It 
can be noticed in Table III that 12 of the 16 projects were 
underestimated by experts. The reasons for this underes- 
timation tendency include the desire to please manage- 
ment, incomplete recall of previous experiences, lack of 
familiarity with the entire software job, and lack of enough 
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TABLE I 
SIMPLEEXPERTESTIMATIONFORSECUREMESSAGECOMMUNICATION 

SYSTEMSIZE 

PERT ESTIMATION FOR 
TABLE II 

SECUREMESSAGE COMMUNICATION SYSTEM SIZE 

Function tItlmlStlc Most Likely Pesslmlstlc Expected Devlatlon 
Module Size Size Size Size 

I I 1 I I 
u1/cont 1 1,800 1 2.500 1 3 200 

1 Commun ) 700 1 1,000 1 1,300’ 

TABLE III 
ACTUALANDPREDICTEDSIZEOF~~ SOFTWAREPROJECTS 

2 
3 
4 
5 
6 
7 

3 
8 
9 
IO 
I I 
I2 
I3 
I4 
I5 
I6 

Artllal S,,P 

70,919 
128.837 

23,015 
34,560 
23,000 
25,000 
52,080 

7,650 
25,860 
16,300 
17,410 
33,900 
57,194 
2 1,020 

8,642 
17,480 

, , I= 

34,705 
32, IO0 
22,000 

9,100 
12,000 

7,300 
28,500 

8,000 
30,600 

2,720 
15,300 

105,300 
18,500 
35,400 

3,650 
2,950 

knowledge of the particular project being estimated. These 
considerations show the need of more accurate software 
sizing techniques. 

B. Objective Models 
There have been several attempts to come up with an 

objective model for predicting software size. Generally 
the size of a system is expressed as a function of some 
known quantities that reflect characteristics of the system. 
In [ 181, Levitin classifies these models in two groups, ac- 
cording to the type of the quantities upon which the esti- 
mates are made. These groups can be called external 
(specification level) models or internal (implementation 
level) models. 

SpeciJication Level Objective Models: Specification 
level models express size as a function of a number of 
quantities which can usually be determined early in the 
software life cycle from system specifications. One of 
these methods, derived by Albrecht (see [l] and [33]), 
base software sizing on the so-called “function points. ” 
These are characteristics of the system such as the number 
of input and output files, the number of logical internal 

files, the number of inquiries, etc. The calculation of the 
“function points” is performed as a weighted sum of these 
quantities, adjusted by some complexity factors. The es- 
timated size is related to the number of “function points” 
(FP) by an equation of the type 

ES = (B*FP) -A 

where ES is the estimated software size in thousands of 
lines of code (KLOC), and A and B are constants. Table 
IV shows briefly the steps for calculating the “function 
points” for a given application. First the total unadjusted 
function points (TUFP) are calculated. The calculation of 
TUFP is based on weighting the system components (ex- 
ternal inputs, external outputs, etc.) and classifying them 
as “simple,” “average,” or “complex” depending on 
the number of data elements in the component and other 
factors [Table IV(a)]. Then the technical complexity fac- 
tor (TCF) is calculated by estimating the degree of influ- 
ence (DI) of some 14 characteristics of the component 
[Tables IV(b) and IV(c)]. Finally, the function points (FP) 
are given by multiplying the total unadjusted function 
points (TUFP) by the technical complexity factor (TCF) 
[see formula below Table IV(c)]. 

Another method, similar to Albrecht’s one, was derived 
by Itakura and Takayanagi [12]. This model bases its es- 
timations on quantities such as the number of input and 
output files, the number of input and output items, the 
number of items of transaction type reports, etc. These 
quantities are presented in Table V with corresponding 
designators (Xi’s ) . The model equation is as follows 

ES = Ai * Xi 

where ES is the estimated software size in thousands of 
lines of code (KLOC), the Xj’s are the quantities based on 
which the estimation is made, and the Ai’S are the corre- 
sponding coefficients. 

Although these models attempted to achieve a some- 
what more scientific approach to software sizing, it can 
be generally stated that they still present a number of dif- 
ficulties which point to the need of further research in the 
field. We could summarize these points in the following 
considerations: 

1) These methods were derived to be used in banking 
and business applications. Therefore, they lack generality 
concerning the nature of the systems to which they might 
be applicable. 

2) Generally, the quantities upon which the estimates 
are based are related to the interactions between the sys- 
tem and the environment (inputs and outputs). Albrecht 
also attempted to consider the effects of complexity fac- 
tors in his sizing model. It is not difficult to understand 
that programs having the same type and number of inter- 
actions with the environment might have totally different 
sizes. It has also been noticed by Boehm, in [3], that com- 
plexity does not necessarily relate to size. In this sense 
we might have very complex functions which have a rel- 
atively short sized implementation, or relatively lengthy 
simple housekeeping functions. 
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TABLE IV 
FUNCTION POINTS CALCULATION: (a) UNADJUSTED FUNCTION POINTS 

CALCULATION, (b) TECHNICAL COMPLEXITY FACTOR CALCULATION, (c) 
VALUES CORRESPONDING TO DIFFERENT DEGREES OF INFLUENCE. 

I 01  Value5 I 

3) Another difficulty arises when we think about  how 
to extend these models to applications such as  scientific 
programs, text processing, communicat ions systems, and  
others, which emerge day  to day  in the computer  software 
field. There is no  easy way to find the quantit ies upon  
which we should base our  estimates. A study conducted 
in the Navy, based on  a  database of avionics and  sonar  
software data, at tempted to investigate quantitative size 
estimating relationships in these systems. The  result of 
this study [lo] states that “no  attribute factors have  been  
found to be  statistically significant for sizing adjustments, 
except  language.  ’ ’ 

W e  conclude that much research needs  to be  done  in 
order to have  def ined quantif iable system attributes upon  
which to base reliable size estimates. Despite the above  
criticism, the work of Abrecht, and  Itakura and  Takay-  
anagi,  represents a  move from plain subjective expert  es- 
timation to more objective ways of quantifying software 
size early in the software development process. However,  
it seems clear that the goal they looked for needs  to be  
pursued further yet. 

Implementation Level Objective Models: Imple- 
mentat ion level models attempt to express size as  function 
of some characteristics which are more closely related to 
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TABLE V 
SOFTWARE SIZING FACTORS IN ITAKURA AND TAKAYANAGI’S MODEL 

Xl 

x2 

x3 

x4 

x5 

X6 

x7 

X8 

x9 

Xl0 

XI I 

number of Input flies 

number of Input Items 

number of output flies 

number of output Items 

number of Items of transactlons type records 

number of vertical Items In two-dImensIonal table 
type reports 

number of horizontal Items In two-dlmenslonal table 
type reports 

number of calculating processes 

existence of sorting 

sum of output items In reports (X5 +  X6 +  X7) 

sum of output Items In both files and reports 
(X4 +  X5 l X6 +  X7) 

the program itself, whose values can be  determined at de-  
tailed design, before actual coding begins. These quan-  
tities are, mainly, the number  of operators and  the number  
of unique variables and  constants in the program. These 
models do  not address our  basic concern of early cost es- 
timation. However  they are included here for the sake of 
completeness of our  discussions. A number  of implemen- 
tation level objective models for software size estimation 
have been  proposed in the literature, such as  the work of 
Fitsos [9] with the Software Science length equation, the 
work of W a n g  [37], and  the work of Britcher and  Gaffney 
[5]. Details of these models are provided by  Levitin [ 16]- 
Hf31. 

It is interesting to observe that, a l though more accurate 
estimates could be  expected from using these models, due  
to more knowledge of the project which is available after 
the detailed design phase  (Fig. l), the results obtained by  
Levitin do  not support  this expectation. Her conclusion in 
[ 181  says that “program size cannot  be  estimated from the 
number  of program variables with required accuracy.  The  
problem is not our  lack of knowledge of a  right formula 
but rather the simple fact that programs with the same 
number  of variables may differ considerably in their size. ” 
This conclusion is quite similar to ours in our  previous 
considerat ions on  specification level objective sizing 
models. 

III. THE NATURE OF SOFTWARE SIZE ESTIMATION 

From the discussion carried out in the previous section 
we may say that the models and  techniques available to- 
day  for software sizing are not yet reliable enough  to be  
consistently used with existing cost estimation models. 
On  the one  hand,  subjective estimation, as  it has  been  
used in the software industry, lacks a  solid enough  basis 
to be  able to provide sufficiently accurate sizing esti- 
mates. On  the other hand,  the attempts which aim to relate 
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the size of a system to the number of certain external at- 
tributes of this system seem equally unable to be success- 
ful. 

The task of software size estimation has been compared 
by Boehm [3] to the estimation of the number of pages of 
a novel before the novel is actually written. Let us sup- 
pose that a certain author is planning to write a novel 
which has four central characters, who influence each oth- 
ers’ lives profoundly, and twenty incidental characters. 
The story happens in three different locations, it has a two 
year time span, and includes five detailed flashbacks. 
Suppose now that for some reason the editor wants to 
know in advance how many pages this novel will have 
after it is written. How could one estimate this quantity 
based solely on the given information? It is clear that the 
provided informatibn is not enough to make possible such 
an estimate. In order to do that one would need additional 
information such as the complete relation of the events to 
take place in the novel, the detailed interrelationships be- 
tween characters, the aspects on which the author wants 
to focus, etc. In other words, specific knowledge about 
the product would be necessary. Although the software 
sizing problem might not have all of the aspects of the 
novel sizing problem, the second gives us a good appre- 
ciation of the first. 

The considerations so far presented seem to point out 
that specific knowledge about the nature of a software 
system which size one wants to estimate is a must. This 
includes knowledge of the system functions in terms of 
scope, complexity and interaction. Boehm studied the un- 
certainty in software project cost estimates as a function 
of the life cycle phase of a product [3]. The graphic in 
Fig. 2 shows the result of this study, which was empiri- 
cally validated [3, Section 2 1. l] for a human-machine in- 
terface component of a program. The exponential curve 
in the figure resembles a “learning curve” and shows 
clearly that the uncertainty in cost estimates is related to 
the amount of knowledge (or lack of it) about the system 
at each phase of the software life cycle. Although the re- 
ferred study was done with respect to cost estimation as- 
pects of a project, the same concept can be easily ex- 
tended to size estimation aspects. 

With this in mind, it is not difficult to understand that 
subjective techniques fail because of lack of the necessary 
level of system knowledge, and the major flaw with ob- 
jective models is that the factors they intend to base their 
estimates upon are not representative of all aspects of a 
system which might influence its final size. 

If we want to have accurate software estimates we need 
new software sizing models which might be able to over- 
come the weaknesses of the existing ones. Furthermore, 
new models need also to solve the following problems: 

1) We need specific knowledge of a system in its early 
stages of development. 

2) We need to be able to relate, as accurately as pos- 
sible, this knowledge to the physical size of the program. 

3) Given that the ultimate level of information about a 
system in the early stages of its development is clearly 
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Fig. 2. Software project cost estimation accuracy as a function of the life 
cycle phase. 

limited, we need to find a way to cope with this limitation 
and still have reliable sizing estimates, as well as be able 
to evaluate the degree of accuracy of the estimates. 

The methodology we propose in this paper attempts to 
address these issues. In order to capture and represent 
knowledge about the system we use a functional require- 
ments specification model, which enables decomposition 
of complexity and provides for understandability of its 
functionality. This model represents the system and as- 
sociated environment as a number of semiautonomous ob- 
jects acting asynchronously one upon another, just as the 
real world is. This representation points to the object-ori- 
ented approach for software development as a strong 
match to relate the knowledge embedded in the functional 
model to the final system size. This is so due to the fact 
that the representation of a real world problem with an 
object model will correspond to a great extent to the im- 
plementation of the corresponding system in an object- 
oriented programming environment. Finally, a statistical 
analysis provides for the necessary uncertainty evalua- 
tion. This analysis is based on the exponential curve of 
Fig. 2, adapted for the software sizing problem. 

IV. THE OBJECT MODEL FOR FUNCTION REQUIREMENTS 
AND SOFTWARE SIZE ESTIMATION 

Functional requirements are a must in any software sys- 
tem development in order to make it possible for devel- 
opers and customers to understand the system they are 
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both developing and proposing. The days of top-of-the- 
head functional specifications are already passed since the 
great majority of current large complex software systems 
demand a formal model to represent and document their 
functionality. Modeling the functionality of a software 
system is a task undertaken during the requirement anal- 
ysis phase of the software life cycle. 

The major role of a functional model is to provide for 
the understandability of the system it represents. The main 
problem here is how to decompose the system’s complex- 
ity using a divide and conquer strategy. In [40], Yeh et 
al. point to three powerful and desirable properties of a 
functional model. They are as follows. 

I) Abstraction: An abstraction represents several ob- 
jects, suppressing details and concentrating on essential 
properties. It allows one to represent a system in several 
layers, called levels of abstraction [ 191, forming a natural 
hierarchy. Each level sees the level below as a virtual ma- 
chine, with specified properties and functionality. 

2) Partition: The partitioning of a system represents it 
as a sum of its parts, allowing one to concentrate on sys- 
tem components one at a time. High level components 
may also be partitioned, as well as its component parts. 
This leads to the idea of levels of partitioning. A com- 
ponent may also have an abstraction hierarchy. In this case 
a system would have both a horizontal and a vertical de- 
composition. 

3) Projection: A projection of a system represents the 
entire system with respect to a set of its properties. This 
allows us to understand a system from different view- 
points, separating particular facets. An example of that 
could be the descriptive geometry description of a three- 
dimensional physical object which is composed of verti- 
cal and horizontal two-dimensional projections. 

The object-oriented model for functional specification 
that we propose reflects these characteristics as we will 
discuss later. A number of researchers (Booth [4], Stark 
and Seidewitz [29]-[31]), have contributed to a general 
object-oriented methodology. Although they have con- 
centrated somewhat more on design aspects of the object- 
oriented life cycle, the specification model we adopted 
here was largely influenced by their ideas. 

In the proposed object model, each entity of the prob- 
lem domain, or real world, is represented by an object. 
An object may be a person, a machine, a sensor, etc. Each 
object is composed by a state that characterizes it, and a 
set of functions, called methods, that manipulate the data 
corresponding to its state [32]. As a consequence, we may 
view an object as having two projections. One is the data 
structure that represents its state. The other is composed 
by the functions that determine its behavior. An object 
acts upon another by requesting the second object to per- 
form a certain function on its data (state) and return some 
results to the requesting object. No object can act directly 
on another object’s data. This concept is known as infor- 
mation hiding [22]. The fact that an object requests some 
action of another is represented in the model by an arrow 
directed from the object which requests the action to the 
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object which performs the action. Therefore, an object is 
fully characterized by its state, its internal functions and 
its interactions with other objects (we will talk later about 
a fourth characteristic of an object-nonfunctional re- 
quirements it possibly needs to meet). We believe that a 
real world problem is easily represented by a set of ob- 
jects that interact with one another. 

At its top level a system may be represented by a single 
object that interacts with external objects. Beginning at 
this level each object of the system may be refined into 
component objects on a lower level of partitioning. This 
partitioning may continue until objects are completely de- 
composed into primitive objects. A primitive object would 
be one in which internal state (data) and corresponding 
methods (internal functions) are simple enough, in terms 
of complexity and size, to be considered an undecompos- 
able entity of the system. The result of this process is a 
set of levels of partitioning that represents the system (Fig. 
3). Furthermore, each partition may be viewed as a set of 
layers (or levels of abstraction). Each layer defines a vir- 
tual machine which provides service for senior layers. Any 
layer can request operations in junior layers but never in 
senior layers (Fig. 4). It should be noted that not all ob- 
jects in a certain level of partitioning will be amenable for 
further partitions. 

A specification effort should begin by identifying the 
entities in a problem domain and their interrelationships, 
and continue further by detailing the functions performed 
by and the internal state of each object. The next step 
would be to identify which objects could allow partition- 
ing and the layers of abstraction in each partitioning level. 
A major advantage of such specification object model is 
that it makes possible a direct and natural correspondence 
with the real world, since problem domain entities are ex- 
tracted directly into the model without any intermediate 
buffer such as traditional data flow diagrams [20]. This 
also makes the model quite understandable, which is an 
essential characteristic of a functional specification model. 

The above considerations lead us to the fact that an ob- 
ject-oriented representation of a system is a more suitable 
model for accurate software size estimates than one 
achieved through a more traditional approach. The point 
here is that the implementation of the system, provided 
that it is also object-oriented, will match to a great extent 
its functional specification. This matching has been ob- 
served by Seidewitz in [31], where he reports that some 
projects designed and developed at Goddard Space Flight 
Center with an object-oriented approach, turned out to 
have a very smooth transition from specifications to code. 
We should notice that this matching does not necessarily 
occur with other specification methods such as common 
data flows, state transition diagrams, or data-oriented 
models. Although some of these models may also be used 
to specify systems in a hierarchical fashion, they lack the 
above mentioned correspondence between specification 
and implementation that favors the object-oriented model 
as a better choice for providing support for better software 
size estimates. 
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Fig. 3. Levels of decomposition (partitioning). 

v1rtuai 
MachIne 1 

Virtual 
MachIne 2 

Fig. 4. Layers of abstraction. 

We will not go into further detail about this object-ori- 
ented functional model, since our main goal here is to 
show its advantages for early software size estimation. In 
this scenario it is worth noting that we will be much more 
interested in the partitioning aspect of the objects of a sys- 
tem than in the aspect of layers of abstraction, although 
both aspects are needed when the specifications are de- 
rived. Whereas the second aspect is not needed for size 
estimation it will be very important concerning the devel- 
opment of the system. 

The size estimation process of a system, whose func- 
tional model is characterized by a certain number of levels 
of decomposition (partitioning), may be summarized in 
the following steps: 

1) Beginning with the lowest level of decomposition 
evaluate the size of each object. This evaluation should 
consider each function executed by the object, as well as 
the code corresponding to the data structures which will 
hold its internal state. 

2) Continue to higher levels taking into account that 
higher level object sizes may receive contributions of 
component objects as well as of its own data and func- 
tions. 

3) It may be necessary to include “utility objects” to 
account for housekeeping functions. 

4) The estimated size of the whole system will be the 
sum of the size estimates of the objects in the top level of 
decomposition plus the size of possibly existing “utility 
objects. ’ ’ 

It has been advocated in the literature [ 181 that one can- 
not expect to have reliable software size estimates based 
on specification models. Weinberg’s experiment [38] is 
usually taken as the basis for this thesis. In that experi- 
ment, five programmer teams came up with considerably 
different program sizes for the same functional specifica- 
tions. However,  it should be said clearly that those teams 
were given quite different objectives during the develop- 
ment effort. One team was asked to minimize the amount 
of memory required for the program, another was to op- 
timize program understandability, another was to mini- 
mize program length, another was to minimize the devel- 
opment effort, and the last one was to produce the clearest 
possible output. As it can be seen, although the general 
problem statement was the same for the five teams, they 
had quite different nonfunctional specifications. The con- 
clusion we reach is that very restrictive nonfunctional 
specifications might influence software size. If some of 
them are present in a development, they should be con- 
sidered in the size estimation process. This fact does not 
invalidate the sizing technique we present here, since our 
proposition is that estimates should be based on the avail- 
able knowledge of the system. Whereas we consider proj- 
ect decomposition and functional specifications as major 
tools for detailing and representing system knowledge, 
other sources of knowledge such as nonfunctional re- 
quirements might also provide a contribution. A way to 
do that would be, for instance, to add to the characteriza- 
tion of each object a fourth element (other than data, 
methods or interactions) that would be called nonfunc- 
tional constraints. This would be a statement of restrictive 
nonfunctional requirements (if any) each object needs to 
fulfill. This information would also be used in the size 
estimation of that object. 

Finally, we would like to point out that it is our belief 
that the most suited people for estimating software size 
are the future developers of the system. One reason for 
this is that each programmer has his own personal pro- 
gramming style, which often influences software size [ 171. 
Another reason is that system developers, such as design- 
ers and programmers, are the people with the best con- 
ditions for accounting for the influence of nonfunctional 
specifications on system size. 

V. SOFTWARE SIZING: A STATISTICAL MODEL 

Fig. 2 shows a plot of the accuracy of software project 
estimates as a function of the software life cycle phase. 
This resulted from Boehm’s study of projects in TRW. 
The meaning of this graph is that there is a very small 
probability that cost estimates will be out of the bounda- 
ries represented by the two converging exponential curves 
shown in the figure. If we put this in an analytic form we 
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have 

x(n) < = A * (3 + e -B*,l) (upper exponential) 

x(n) >= 
A 

3 + e -Ls*n ( lower exponential) . 

Here x(n) is a cost estimate, A is the actual cost of the 
system, and n relates to the phase in the life cycle when 
the estimate was done. The value of B, in that experiment 
found to be 0.67, determines how fast estimates con- 
verge, that is, what is the improvement in the accuracy of 
estimates as we go from one phase to the next in the soft- 
ware life cycle. 

Whereas Fig. 2 was primarily sketched with cost esti- 
mation in mind, we can extend the same concept to the 
problem of estimating software size. This extension is 
based on the fact that both cost and size estimates rely on 
the available knowledge of the system, as discussed be- 
fore. 

Fig. 5 shows the learning curve concept adapted to soft- 
ware size estimation. This figure differs from Fig. 2 in 
some aspects. Rather than relating size estimates through- 
out life cycle phases, it reflects the variation of size esti- 
mation accuracy, as one increasingly details the func- 
tional specification of the system by means of object de- 
composition, during the requirements analysis phase of 
the software development process. A feasibility phase is 
considered to be completed at this time. Therefore, the 
crossing points between the boundary exponentials and 
the vertical axis will be different from Fig. 2, where the 
feasibility phase is still considered. The value of II is now 
related to the level of decomposition of system objects in 
the specification based on which the estimate was done. 
In this scenario, II = 0 means that no functional specifi- 
cation was carried out yet, IZ = 1 means that a top level 
specification has been accomplished, n = 2 means that 
the objects in the top level were partitioned one level be- 
low, and so forth. The value of B accounts for how fast 
estimates converge to the actual size A, as we pursue in 
decomposing system objects down to lower and lower 
levels. 

The hypothesis we base this upon is that the proposed 
object specification model will provide for a sufficiently 
disciplined methodology for capturing system knowledge 
as to cause estimates to converge smoothly to the actual 
size of system as further levels of object decomposition 
are reached. This means that an estimate made at a certain 
level of decomposition is not unrelated to previous esti- 
mates, obtained with less detailed levels of decomposi- 
tion. This is easily seen if we consider that when going a 
level down in the decomposition process one just carries 
out the decomposition of objects in the current lower level. 
In this scenario, the amount of knowledge corresponding 
to undecomposed objects (not all objects will be decom- 
posable) will remain the same, and the new knowledge 
achieved by the increased detail of decomposed objects 
will be a refinement of some less accurate knowledge that 
was already available before. The conclusion we reach is 

2 OA 

A 

0 5, x + 
Fig. 5. Software size estimation accuracy as a function of object decom- 

position level in the functional model. 

that, although extraneous estimates may show up here and 
there in the process, in general the pattern of estimates 
should converge monotonically to the actual size value. 
These considerations point to possible patterns of project 
size estimates as those shown in Fig. 6. 

Additional important information, needed for the ap- 
plication of this technique, is how to obtain the value of 
B, which sets the rate for the exponential decay of upper 
and lower boundary curves of Fig. 5. After a lot of study 
and experimentation it is now well agreed upon among 
software engineering researchers and practitioners that any 
software metrics model needs to be tunned to the specific 
environment where it will be applied. In this work, the 
value of B is exactly the one which will incorporate with 
the estimating process the characteristics and previous ex- 
periences of the organization where a particular software 
project will take place. It should be calculated by analyz- 
ing a representative number of already accomplished proj- 
ects with sizes estimated by using the proposed method- 
ology. One would plot the values of project size estimates 
as a function of n, the level of decomposition of objects 
in the functional model, and look for the exponential 
boundary curves which are the “envelopes” for the entire 
range of estimates. This can be done by curve fitting sta- 
tistical techniques. 

Going further in the development of the model, we have 
that, for a particular estimate x ( n ), evaluated considering 
n levels of objects decomposition, the following will hold 

x(n)<=A*(l +e -‘* ” ) (upper exponential ) 

and 

x(n) >= 
A 

1 + ePB*’ 
(lower exponential) . 
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I * I m 

n ” 

Fig. 6. Possible patterns for size estimates (assuming that subsequent es- 
timates are not independent from one another) 

These relations yield 

A >= 44 e -B*n 
1 + e-B*n 

and A <=~(a)*(1 - 1 

which can be rewritten as 

A >= U(n) and A <= L2(n) 
where 

44 
L1(n) = 1 + e-B*n 

and 

L2(n) = x(n) * (1 + e-B*n) 

and finally, 

U(n) <= A <=,52(n). 

Given B and n, we can also calculate a confidence interval 
for the estimates. This confidence interval turns out to be 
independent of A, the actual program size. The negative 
and positive deviations, dl (n ) and d2 (n ), which char- 
acterize the confidence interval, can be calculated as 

A 

dl(n) = 
1 + e-B*n - A 

A 

and 

d2(n) = A * (1 + e-B*n) - A 
A 

working with the above expressions we get 

dl(n) = -e-B*n and d2(n) = eeB*“. 1 + e-B*n 

As d 1 (n ) and d2 (n ) are independent of A, given a cer- 
tain B we can plot their values as a function of n. Table 
VI shows the values of dl (n) and d2(n) for B = 0.47, 
with n varying from 1 to 6. We notice that the positive 
deviation is generally larger than the negative one, ac- 
counting for the biasing towards underestimation ob- 
served in reported software sizing experiences. 
petted value for a size estimate given a certain n 
be 

where 

The ex- 
= N will 

Llmax(N) = max [Ll(n)] forn <= N 

and 

L2,i,(N) = min [L2(n)] for n < = N. 

For n = N there will be a very large probability that the 
actual program size A will be within the interval 

[J&in(N), Knax(N)] 
where 

Emin = E(N) * (1 + dl(n)) 

and 

E,&N) = E(N) * (1 + d2(n)). 

It is interesting to note that, since the expected negative 
and positive deviations, d 1 (n ) and d2 (n ), are indepen- 
dent of the actual size A, it is possible for one to know in 
advance the number of decomposition levels needed to 
achieve a desired accuracy. This fact provides the method 
with a criterion by which one can know whether it should 
or not be used in a particular project to be developed in a 
given organization. There will be cases when this tech- 
nique will not be worth using. This will happen for small 
values of B, such that the convergence of the estimates 
with n will be so slow that, even if one gets to the lowest 
possible level of decomposition, the confidence interval 
will not satisfy the accuracy required for the particular 
project. The decision of using or not this technique will 
depend on the value of B, as well as on the required ac- 
curacy for a particular project cost estimation. 

Detailing the method, we would have the following 
steps in the estimation process: 

1) Given the value of B, plot in a table the values of 
dl (n) and d2(n) as a function of Iz. 

2) Given the required accuracy for the estimation, 
check in that table what is the necessary level of object 
decomposition to go through in the functional specifica- 
tion model. Call it N. 

3) Work the correspondent functional specifications 
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TABLE VI TABLE VII 
PLOT OF NEGATIVE AND POSITIVE DEVIATIONS AS A FUNCTION OF n, FOR E SIZE ESTIMATION CALCULATIONS FOR PROJECT I, WITH B = 0.47 

= 0.47 

dl(n) 

-0 385 

-0281 

-0 196 

-0 133 

-0 087 

-0 056 

d2(n) 

0 625 

0391 

0 244 

0 153 

0 095 

0 060 

one level of decomposition down. If this is the first step, 
model the system with top level objects. 

4) Estimate system size as suggested in Section IV, 
yielding x ( n ) . 

5) Calculate Ll (n), L2(n), Ll,,,(n) and L2,i,(n). 
6) Calculate the expected system size E( n ), and the 

maximum and minimum expected sizes, E,,,(n) and 
Emin (n), for this level of decomposition n. 

7) If n = N stop. Consider E,i”( N), E( N ), and 
E,,, (N ) as the minimum, expected, and maximum val- 
ues for system size. If II C N and the objects in the func- 
tional model cannot be decomposed one more level, stop 
and disregard results so far achieved. The method will not 
provide enough accuracy in this case. If objects still allow 
decomposition, go one step further to item (4). 

As the proposed method is very sensitive to the value 
of B, it is important to consider that this value will not be 
static for a particular environment. In other words, esti- 
mators may “learn” how to come up with better estimates 
by getting more used to the methodology and the environ- 
ment characteristics, and by relying more and more on the 
experiences of past projects. With this in mind, it would 
be wise to recalculate B when comparison between esti- 
mates and actual size values shows that the method is 
yielding too broad confidence intervals in face of the in- 
creased accuracy of estimates. 

We can illustrate the application of the proposed tech- 
nique with two examples. Project I is a relatively small 
business application. The actual size of the system was 
found to be 10,000 lines of code, after the project was 
accomplished. The value of B for the corresponding or- 
ganization has been evaluated as 0.47, and, as the entire 
cost of the project is relatively low, an overall accuracy 
of 25% was considered acceptable. Looking at Table VI 
we notice that we will need up to three levels of decom- 
position in the functional model. Table VII shows the val- 
ues of the quantities calculated in the estimating process, 
and Fig. 7 presents a graph of the expected size E( n > 
provided by the model. We can see that the first estimate 
shows a gross discrepancy with respect to the actual 
achieved size, but subsequent ones converge smoothly to 
the value of A. By the end of the process the expected size 
in lines of code is 10,590, with possible deviation values 
of -2076 and +2584. 

E(n) 

I0,000 (I * expc-0 47n)) 

I 2 3 n 

Fig. 7. Learning curve for Project I size estimates E(n). 

Project II, carried out in the same company, corre- 
sponds to the development of an operating’system. This 
project, required an accuracy of 10% due to organization 
budget constraints at the time. Since B is the same as in 
Project I, Table VI shows that functional specifications 
should go through 5 levels of object decomposition. Table 
VIII presents the values calculated in the estimating pro- 
cess. The expected size value was 37,505 lines of code, 
and deviation values -3263 and + 3563. As actual pro- 
gram size was found to be 40,000 lines of code, we can 
see in Fig. 8 that model estimates E( n ) converge 
smoothly to A as 12 increases. 

VI. RELATING SIZE TO COST 

As seen in the previous section, the size estimation 
method proposed in this paper allows one to estimate sys- 
tem size with a specified confidence interval. This confi- 
dence interval depends on the value of B, the exponential 
decay of the size estimates exponential “envelope” curve, 
and on the value of n, the level of object decomposition 
in the functional specifications model. Since our ultimate 
goal in estimating program size is to be able to predict 
program cost as accurately as possible, it would be nice, 
now, to relate our size estimation results to cost. In other 
words, we would like to know how much to budget for a 
certain software project and what level of variance should 
be expected from this estimation. In order to do that we 
can use, for instance, the COCOMO model [3] to calcu- 
late the estimated development cost of Project I and Proj- 
ect II, the examples of the previous section. 

COCOMO predicts project cost, in man-months, pri- 
marily based on the estimated number of thousands of 
lines of code for the system. This nominal estimation is 
then adjusted by a number of effort multipliers, whose 
overall product is called Effort Adjustment Factor (EAF). 
COCOMO effort multipliers are summarized in Table IX. 
Observation of the nature of effort multipliers shows that 
the necessary system knowledge for their evaluation is 
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TABLE VIII 
SIZEESTIMATIONCALCULATIONSFORPROJECTII ,  WITHB = 0.47 

” x(n) Llcn) LZ(ll) LI (“1 L2 (ITI 
max rnlr! 

I 28,000 17,231 45,500 / 7.23 I 45,500 

2 32,500 23.01 I 45,901 23.01 I 45.90 I 

3 34,700 27,891 43.712 27,891 43, I72 

4 35,200 30,540 40.571 30,540 40,571 

5 37,350 34,098 40,912 34.098 40,912 

40,000 (I + exrl-0 47n)) 

i cn, 
max 

9,604 

3,472 

8,670 

5,796 

3,563 

I 2 3 4 5 -i 

Fig. 8. Learning curve for Project II size estimates E(n). 

certainly available by the requirements/specifications 
. phase of the software life cycle, i.e., at n = 0. 

For these examples, as we use COCOMO,  our assump- 
tions will be rather simple, since our purpose here is not 
to detail COCOMO itself, but to relate the presented size 
prediction method to cost estimation. In this scenario, we 
can consider the top level objects in the functional model 
as the system components referred to in Intermediate CO-  
COMO. For the sake of simplicity we assume that effort 
multipliers are the same for all system components (top 
level objects) in Project I and Project II. This assumption 
allows us to view each of these objects, for cost estima- 
tion purposes, as having just one component. We also as- 
sume that both systems are developed from scratch. An- 
other point is that the development team has extensive 
experience in working with related projects, allowing us 
to classify these projects as organic, in COCOMO ter- 
minology [3]. Intermediate COCOMO formulas for effort 
estimation of organic projects are 

(MM)“om = 3.2 * (KEDSI)‘.‘~ 

(MM)adj = (MM)nom * EAF 
EAF = I1 EM, 

where KEDSI (thousands of expected delivered source in- 
structions) is the estimated program size in thousands of 
lines of code, and the EMi’s are the effort multipliers. 

Table X and Table XI show the calculated effort ad- 
justment factor (EAF) for Project I and Project II, respec- 
tively. Table XII and Table XIII summarize the cost es- 
timation process for Project I and Project II, respectively. 
The KEDSI values in these tables estimated using the pro- 
posed sizing method. In order to express project cost in 
dollars, the average equivalence in dollars per man-month 
was also considered for each project. 

TABLE IX 
COCOMO EFFORTMULTIPLIERS 

TABLE X 
EFFORTADJUSTMENTFACTORCALCULATIONFORPROJECTI  

EAF 067 

TABLE XI 
EFFORTADJUSTMENTFACTORCALCULATIONFORPROJECTI I  

TABLE XII 
COSTESTIMATIONFORPROJECTI  

component KEDSl EAF MM MM SK/MM Cost (SK) 
"Om adI 

Ml"lnl"rn Ml"lnl"rn 
851 067 30 20 so to,54 

Text 
P,,‘,w"g Expected Exp=?tted 

System 1059 067 38 26 50 12774 

MZXllTl”lT MaXlm”Ul 
,371 067 48 32 50 ,606, 

The size estimation technique proposed in this paper 
enables us to say that the ultimate size of Project I will be 
10.59 KEDSI, with possible deviation interval of -2.08 
KEDSI, +2.58 KEDSI. For Project II the expected final 
size is 37.51 KEDSI, with possible deviation interval of 
-3.26 KEDSI, +3.56 KEDSI. 

As a consequence, we may also say that the cost of 
Project I will be $127,740 (dollars), with possible devia- 



www.manaraa.com

LARANJEIRA: SOFTWARE SIZE ESTIMATION 521 

TABLE XIII 
COST ESTIMATION FOR PROIECT II 

tion interval of -$26,200 (dollars), +$32,870 (dollars), 
and  the cost of Project II will be  $902,140 (dollars), with 
possible deviation interval of - $82,400 (dollars), 
+$90,100 (dollars). This type of fol low-through of dol- 
larizing fulfills the manager’s needs  of cost and  risk as- 
sessment.  

VII. CONCLUDING REMARKS 

A technique for software size estimation has  been  pro- 
posed.  The  basis for estimates, when using this method, 
is the available knowledge of the considered system. In 
order to capture and  represent this knowledge, an  object- 
or iented functional model  has  been  adopted.  This func- 
tional model  provides for a  disciplined methodology for 
decomposing system complexity. This methodology is the 
key in the process of detailing the functionality of the sys- 
tem in order to enable estimators to achieve more reliable 
estimates. The  object-oriented paradigm plays an  impor- 
tant role in this process since it embeds  a  strong corre- 
spondence between specifications and  implementation. 
This characteristic makes it easier to relate an  object func- 
tions, sometimes called methods,  and  data to the amount  
of code necessary to implement it. 

In order to relate previous exper ience with size esti- 
mation in a  certain organization, the proposed sizing tech- 
n ique incorporates a  statistical approach.  This approach 
also enables one  to have an  objectively der ived conf idence 
interval for the estimates, what has  been  a  desire among  
software metrics researchers.  

The  presented methodology is still subjective, since it 
ultimately depends  on  expert  estimations. Nevertheless, 
this subject iveness is controlled by  disciplined capturing 
of system knowledge and  statistical correlation with past 
experience. The  methodology also provides a  criterion 
that enables one  to know when the amount  of subjective- 
ness  related to the estimates prevents its use. Also, certain 
issues like nonfunct ional requirements inf luence and  low 
biasing in software estimations have been  considered in 
this sizing method. 

Finally, we saw that the utilization of this sizing tech- 
n ique with cost estimation models enables these models 
to predict system cost with known accuracy,  what pro- 
vides for better controlled and  managed  software projects. 
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